Revision | 04dd78bb33cee72e8b260c65262ca2d42e46c73c (tree) |
---|---|
Zeit | 2006-12-11 00:25:45 |
Autor | iselllo |
Commiter | iselllo |
(empty log message)
@@ -0,0 +1,548 @@ | ||
1 | +rm(list=ls()) | |
2 | + | |
3 | + | |
4 | + | |
5 | + | |
6 | + # integral = 0.0D0 | |
7 | + | |
8 | + | |
9 | +# do I=1,NN-4,4 | |
10 | +#!C S1=h/3.0D0*(f(I)+4.0D0*f(I+2)+f(I+4)) | |
11 | +#!C S2=h/6.0D0*(f(I)+4.0D0*f(I+1)+2.0D0*f(I+2)+4.0D0*f(I+3)+f(I+4)) | |
12 | + | |
13 | + | |
14 | +#!C S1=h/3.0D0*(f(I)+4.0D0*f(I+1)+2.0D0*f(I+2)+4.0D0*f(I+3)+f(I+4)) | |
15 | + # S2=h/45.0D0*(14.0D0*f(I)+64.0D0*f(I+1) & | |
16 | + # & +24.0D0*f(I+2)+64.0D0*f(I+3)+14.0D0*f(I+4)) | |
17 | + | |
18 | + | |
19 | + # integral = integral + S2 | |
20 | + | |
21 | + | |
22 | +#!C eps = eps + dabs(S1-S2)/15.0D0 | |
23 | + | |
24 | + | |
25 | +#!C eps = eps + dabs(S1-S2) | |
26 | + | |
27 | + | |
28 | + # end do | |
29 | + | |
30 | + | |
31 | +#!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | |
32 | + # end subroutine integration | |
33 | + | |
34 | +skip<-1 | |
35 | + | |
36 | +def_integral<-function(integrand,h) | |
37 | +{ | |
38 | +n<-length(integrand) | |
39 | +myseq<-seq(1,n-4,4) | |
40 | +integral<-0 | |
41 | +for (i in myseq) | |
42 | +{ | |
43 | +integral<- integral + h/45.0*(14.0*integrand[i]+64.0*integrand[i+1] +24.0*integrand[i+2]+64.0*integrand[i+3]+14.0*integrand[i+4]) | |
44 | + | |
45 | +} | |
46 | +return(integral) | |
47 | +} | |
48 | + | |
49 | +#Now a test of the integration routine | |
50 | + | |
51 | +test_seq<-seq(0,2*pi,len=200) | |
52 | +integ<-sin(test_seq) | |
53 | +h2<-test_seq[25]-test_seq[24] | |
54 | +sin_int<-def_integral(integ,h2) | |
55 | + | |
56 | + | |
57 | + | |
58 | +lendat<-23 | |
59 | +for(i in 1:lendat) | |
60 | +{ | |
61 | + fn <- paste("r",i,".txt",sep="") | |
62 | + dat <- read.table(fn,header=FALSE) | |
63 | + # ... do your stuff on "dat" here ... | |
64 | + dat_temp<-as.matrix(dat) | |
65 | +{ | |
66 | +if (i ==1) {mymat<-dat_temp} | |
67 | + | |
68 | +else | |
69 | +mymat<-cbind(mymat,dat_temp) | |
70 | +} | |
71 | +} | |
72 | + | |
73 | +print("OK reading the first files") | |
74 | + | |
75 | +mymat_save<-mymat # It is handy to save these data into a separate object and work with mymat only in the following | |
76 | + | |
77 | + | |
78 | +h<-abs(mymat[200,1]-mymat[201,1]) | |
79 | +#vecdim<-dim(mymat) | |
80 | +#n<-vecdim[2] | |
81 | +#myseq<-seq(1,n-4,4) | |
82 | + | |
83 | +#define below each contribution to the integral and then work out the total. | |
84 | + | |
85 | + | |
86 | + | |
87 | + | |
88 | + | |
89 | +vecdim<-dim(mymat) | |
90 | +n_int<-vecdim[2]/2 | |
91 | +int_value<-seq(1:n_int) | |
92 | +int_value2<-seq(1:n_int) | |
93 | +int_value3<-seq(1:n_int) | |
94 | +int_value4<-seq(1:n_int) | |
95 | +int_value5<-seq(1:n_int) | |
96 | +int_value_save<-seq(1:n_int) | |
97 | + | |
98 | + | |
99 | + | |
100 | + | |
101 | +x_seq<-seq(1:n_int) | |
102 | + | |
103 | +for (i in 1:n_int) # I define the grid position I will be using | |
104 | +{ | |
105 | +{ | |
106 | +if (i<=11) | |
107 | +{ | |
108 | +x_seq[i]<-0.01*(i-1) | |
109 | +} | |
110 | + | |
111 | +if (i > 11 & i<=20 ) | |
112 | +{ | |
113 | +x_seq[i]<-0.1*(i-10) | |
114 | +} | |
115 | +if (i>20 & i<= lendat) | |
116 | +{ | |
117 | +x_seq[i]<-i-19 | |
118 | +} | |
119 | +} | |
120 | +} | |
121 | + | |
122 | + | |
123 | +for(i in 1:n_int) | |
124 | +{ | |
125 | +myseq2<-mymat[ ,2*i] | |
126 | +int_value[i]<-def_integral(myseq2,h) | |
127 | +} | |
128 | + | |
129 | + | |
130 | + | |
131 | + | |
132 | + | |
133 | +print("the density at wall is") | |
134 | +print(int_value[1]) | |
135 | + | |
136 | +dens_v<-int_value[ ]/(0.193242) | |
137 | + | |
138 | +pdf("density-absorbing-1.pdf") | |
139 | +plot(x_seq,int_value/int_value[1],col="blue",xlab=expression("x"),ylab=expression(" average v ")) | |
140 | +lines(x_seq,int_value/int_value[1],lwd=2,col="red") | |
141 | +dev.off() | |
142 | + | |
143 | + | |
144 | + | |
145 | +save_data<-matrix(ncol=2,nrow=n_int) | |
146 | +save_data[ ,2]<-int_value[ ] | |
147 | +save_data[ ,1]<-x_seq[ ] | |
148 | + | |
149 | + | |
150 | + | |
151 | + | |
152 | + | |
153 | + | |
154 | +write.table(save_data,"density-normalized.txt",quote=FALSE,row.names=FALSE) | |
155 | + | |
156 | +#Now I can plot and work out other quantities. | |
157 | +#mymat[ ,2]<-mymat[ ,1]*mymat[ ,2] | |
158 | + | |
159 | +for (i in 1:n_int) | |
160 | +{ | |
161 | +myseq2<-mymat[ ,2*i]*mymat[ ,2*(i-1)+1] | |
162 | +int_value2[i]<-def_integral(myseq2,h) | |
163 | +} | |
164 | + | |
165 | + | |
166 | + | |
167 | +pdf("flux-wrong-absorbing-1.pdf") | |
168 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression("J= average (rho*v)")) | |
169 | +lines(x_seq,int_value2,lwd=2,col="red") | |
170 | +dev.off() | |
171 | + | |
172 | +flux_v<-int_value2 | |
173 | + | |
174 | + | |
175 | + | |
176 | +int_value2[ ]<-int_value2[ ]/int_value[] | |
177 | + | |
178 | +pdf("velocity-absorbing-1.pdf") | |
179 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression(" average v")) | |
180 | +lines(x_seq,int_value2,lwd=2,col="red") | |
181 | +dev.off() | |
182 | + | |
183 | + | |
184 | +vel_v<-int_value2 | |
185 | + | |
186 | +flux_v_correct<-vel_v*dens_v | |
187 | + | |
188 | + | |
189 | + | |
190 | + | |
191 | + | |
192 | +for (i in 1:n_int) | |
193 | +{ | |
194 | +myseq2<-mymat[ ,2*i]*(mymat[ ,2*(i-1)+1])*(mymat[ ,2*(i-1)+1]) | |
195 | +int_value3[i]<-def_integral(myseq2,h) | |
196 | +} | |
197 | + | |
198 | + | |
199 | +pdf("rho-velocity-squared-absorbing-1.pdf") | |
200 | +plot(x_seq,int_value3,col="blue",xlab=expression("x"),ylab=expression(" average [rho*(v squared)]")) | |
201 | +lines(x_seq,int_value3,lwd=2,col="red") | |
202 | +dev.off() | |
203 | + | |
204 | + | |
205 | +int_value3[ ]<-int_value3[ ]/int_value[ ] # now int_value3 contains <v> | |
206 | + | |
207 | + | |
208 | + | |
209 | +pdf("velocity-squared-absorbing-1.pdf") | |
210 | +plot(x_seq,int_value3,col="blue",xlab=expression("x"),ylab=expression(" average v squared")) | |
211 | +lines(x_seq,int_value3,lwd=2,col="red") | |
212 | +dev.off() | |
213 | + | |
214 | +velsq_v<-int_value3 | |
215 | + | |
216 | +for (i in 1:n_int) | |
217 | +{ | |
218 | +myseq2<-mymat[ ,2*i]*(mymat[ ,2*(i-1)+1])*(mymat[ ,2*(i-1)+1]) | |
219 | +int_value4[i]<-def_integral(myseq2,h) | |
220 | +} | |
221 | + | |
222 | +pdf("rho-velocity-fluctuations-squared-absorbing-1.pdf") | |
223 | +plot(x_seq,int_value4,col="blue",xlab=expression("x"),ylab=expression(" average (rho*sig_vv squared)")) | |
224 | +lines(x_seq,int_value4,lwd=2,col="red") | |
225 | +dev.off() | |
226 | + | |
227 | + | |
228 | +int_value4[ ]<-int_value4[ ]/int_value[ ]-int_value2[ ]*int_value2[ ] | |
229 | + | |
230 | + | |
231 | +pdf("velocity-fluctuations-squared-absorbing-1.pdf") | |
232 | +plot(x_seq,int_value4,col="blue",xlab=expression("x"),ylab=expression(" average (sig_vv squared)")) | |
233 | +lines(x_seq,int_value4,lwd=2,col="red") | |
234 | +dev.off() | |
235 | + | |
236 | +sig_v<-int_value4 | |
237 | + | |
238 | +# Now I compare these results to the ones predicted by Alichenkov | |
239 | +vel_ali1<-function(chi,sig) | |
240 | +{ | |
241 | +(1-chi)/(1+chi)*sqrt(2*sig/pi) | |
242 | +} | |
243 | + | |
244 | +vel_ali2<-function(chi,vsq) | |
245 | +{ | |
246 | +(1-chi)/(1+chi)*sqrt(2*vsq/pi) | |
247 | +} | |
248 | + | |
249 | +chi<-0 # perfect absorption | |
250 | + | |
251 | +vel_model1<-function() | |
252 | +{ | |
253 | +vel_ali1(chi=chi,sig=int_value4) | |
254 | +} | |
255 | + | |
256 | +vel_model2<-function() | |
257 | +{ | |
258 | +vel_ali2(chi=chi,vsq=int_value3) | |
259 | +} | |
260 | + | |
261 | +vel1<-vel_model1() | |
262 | +vel2<-vel_model2() | |
263 | + | |
264 | +#Now I add Nagvi's results for the density | |
265 | +nagvi_den<-function(b,D,x_ini,x) | |
266 | +{ | |
267 | +b/((D+b*x_ini)*x_ini*(1-0.5*b*x_ini/(D+b*x_ini)))*(x-x_ini)+1/(x_ini*(1-0.5*b*x_ini/(D+b*x_ini))) | |
268 | +} | |
269 | + | |
270 | +nagvi<-function() | |
271 | +{ | |
272 | +nagvi_den(b,D,x_ini,x) | |
273 | +} | |
274 | + | |
275 | +b<-1 | |
276 | +D<-1/100 | |
277 | +x_ini<-8 | |
278 | +x<-x_seq | |
279 | + | |
280 | +ana_dens<-nagvi() | |
281 | + | |
282 | + | |
283 | + | |
284 | +# Now I'll create a plot with the 3 velocities together | |
285 | + | |
286 | +pdf("velocity-absorbing-comparison-Alichenko.pdf") | |
287 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression(" average v"),type="b", | |
288 | +ylim=range(c(min(int_value2,vel1,vel2),max(int_value2,vel1,vel2)))) | |
289 | +#lines(x_seq,int_value2,lwd=2,col="blue") | |
290 | +#lines(x_seq,vel1,lwd=2,col="red") | |
291 | +lines(x_seq,vel1,lwd=2,col="red",type="b") | |
292 | +#lines(x_seq,vel2,lwd=2,col="black") | |
293 | +lines(x_seq,vel2,lwd=2,col="black",type="b") | |
294 | +legend(0.4, 1, c(expression("Numerics"), expression("Alipchenkov eq 6"), expression("Alipchenkov eq 15")), | |
295 | +lwd= c(2, 2,2),col=c("blue","red","black" )) | |
296 | + | |
297 | +dev.off() | |
298 | + | |
299 | + | |
300 | +################################################### | |
301 | +################################################## | |
302 | + | |
303 | + | |
304 | + | |
305 | +rm(mymat) | |
306 | +rm(dat_temp) | |
307 | + | |
308 | + | |
309 | +for(i in 1:lendat) | |
310 | +{ | |
311 | + fn <- paste("../../../no-convection/v0-0/final/rnc",i,".txt",sep="") | |
312 | + dat <- read.table(fn,header=FALSE) | |
313 | + # ... do your stuff on "dat" here ... | |
314 | + dat_temp<-as.matrix(dat) | |
315 | +{ | |
316 | +if (i ==1) {mymat<-dat_temp} | |
317 | + | |
318 | +else | |
319 | +mymat<-cbind(mymat,dat_temp) | |
320 | +} | |
321 | +} | |
322 | + | |
323 | +for(i in 1:n_int) | |
324 | +{ | |
325 | +myseq2<-mymat[ ,2*i] | |
326 | +int_value[i]<-def_integral(myseq2,h) | |
327 | +} | |
328 | + | |
329 | + | |
330 | + | |
331 | + | |
332 | + | |
333 | +print("the density at wall is") | |
334 | +print(int_value[1]) | |
335 | + | |
336 | +dens<-int_value/(0.706045) | |
337 | + | |
338 | +pdf("2density-absorbing-1.pdf") | |
339 | +plot(x_seq,int_value/int_value[1],col="blue",xlab=expression("x"),ylab=expression(" average v ")) | |
340 | +lines(x_seq,int_value/int_value[1],lwd=2,col="red") | |
341 | +dev.off() | |
342 | + | |
343 | + | |
344 | + | |
345 | +save_data<-matrix(ncol=2,nrow=n_int) | |
346 | +save_data[ ,2]<-int_value[ ] | |
347 | +save_data[ ,1]<-x_seq[ ] | |
348 | + | |
349 | + | |
350 | + | |
351 | + | |
352 | +write.table(save_data,"density-normalized.txt",quote=FALSE,row.names=FALSE) | |
353 | + | |
354 | +#Now I can plot and work out other quantities. | |
355 | +#mymat[ ,2]<-mymat[ ,1]*mymat[ ,2] | |
356 | + | |
357 | +for (i in 1:n_int) | |
358 | +{ | |
359 | +myseq2<-mymat[ ,2*i]*mymat[ ,2*(i-1)+1] | |
360 | +int_value2[i]<-def_integral(myseq2,h) | |
361 | +} | |
362 | + | |
363 | + | |
364 | + | |
365 | +pdf("2flux-absorbing-1.pdf") | |
366 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression("J= average (rho*v)")) | |
367 | +lines(x_seq,int_value2,lwd=2,col="red") | |
368 | +dev.off() | |
369 | + | |
370 | +flux<-int_value2 | |
371 | + | |
372 | +int_value2[ ]<-int_value2[ ]/int_value[] | |
373 | + | |
374 | +pdf("2velocity-absorbing-1.pdf") | |
375 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression(" average v")) | |
376 | +lines(x_seq,int_value2,lwd=2,col="red") | |
377 | +dev.off() | |
378 | + | |
379 | + | |
380 | +vel<-int_value2 | |
381 | +flux_correct<-vel*dens | |
382 | + | |
383 | +for (i in 1:n_int) | |
384 | +{ | |
385 | +myseq2<-mymat[ ,2*i]*(mymat[ ,2*(i-1)+1])*(mymat[ ,2*(i-1)+1]) | |
386 | +int_value3[i]<-def_integral(myseq2,h) | |
387 | +} | |
388 | + | |
389 | + | |
390 | +pdf("2rho-velocity-squared-absorbing-1.pdf") | |
391 | +plot(x_seq,int_value3,col="blue",xlab=expression("x"),ylab=expression(" average [rho*(v squared)]")) | |
392 | +lines(x_seq,int_value3,lwd=2,col="red") | |
393 | +dev.off() | |
394 | + | |
395 | + | |
396 | +int_value3[ ]<-int_value3[ ]/int_value[ ] # now int_value3 contains <v> | |
397 | + | |
398 | + | |
399 | + | |
400 | +pdf("2velocity-squared-absorbing-1.pdf") | |
401 | +plot(x_seq,int_value3,col="blue",xlab=expression("x"),ylab=expression(" average v squared")) | |
402 | +lines(x_seq,int_value3,lwd=2,col="red") | |
403 | +dev.off() | |
404 | + | |
405 | +velsq<-int_value3 | |
406 | + | |
407 | +for (i in 1:n_int) | |
408 | +{ | |
409 | +myseq2<-mymat[ ,2*i]*(mymat[ ,2*(i-1)+1])*(mymat[ ,2*(i-1)+1]) | |
410 | +int_value4[i]<-def_integral(myseq2,h) | |
411 | +} | |
412 | + | |
413 | +pdf("2rho-velocity-fluctuations-squared-absorbing-1.pdf") | |
414 | +plot(x_seq,int_value4,col="blue",xlab=expression("x"),ylab=expression(" average (rho*sig_vv squared)")) | |
415 | +lines(x_seq,int_value4,lwd=2,col="red") | |
416 | +dev.off() | |
417 | + | |
418 | + | |
419 | +int_value4[ ]<-int_value4[ ]/int_value[ ]-int_value2[ ]*int_value2[ ] | |
420 | + | |
421 | + | |
422 | +pdf("2velocity-fluctuations-squared-absorbing-1.pdf") | |
423 | +plot(x_seq,int_value4,col="blue",xlab=expression("x"),ylab=expression(" average (sig_vv squared)")) | |
424 | +lines(x_seq,int_value4,lwd=2,col="red") | |
425 | +dev.off() | |
426 | + | |
427 | +sig<-int_value4 | |
428 | + | |
429 | +# Now I compare these results to the ones predicted by Alichenkov | |
430 | +#vel_ali1<-function(chi,sig) | |
431 | +#{ | |
432 | +#(1-chi)/(1+chi)*sqrt(2*sig/pi) | |
433 | +#} | |
434 | + | |
435 | +#vel_ali2<-function(chi,vsq) | |
436 | +#{ | |
437 | +#(1-chi)/(1+chi)*sqrt(2*vsq/pi) | |
438 | +#} | |
439 | + | |
440 | +#chi<-0 # perfect absorption | |
441 | + | |
442 | +#vel_model1<-function() | |
443 | +#{ | |
444 | +#vel_ali1(chi=chi,sig=int_value4) | |
445 | +#} | |
446 | + | |
447 | +#vel_model2<-function() | |
448 | +#{ | |
449 | +#vel_ali2(chi=chi,vsq=int_value3) | |
450 | +#} | |
451 | + | |
452 | +vel1bis<-vel_model1() | |
453 | +vel2bis<-vel_model2() | |
454 | + | |
455 | +# Now I'll create a plot with the 3 velocities together | |
456 | + | |
457 | +pdf("2velocity-absorbing-comparison-Alichenko.pdf") | |
458 | +plot(x_seq,int_value2,col="blue",xlab=expression("x"),ylab=expression(" average v"),type="b", | |
459 | +ylim=range(c(min(int_value2,vel1bis,vel2bis),max(int_value2,vel1bis,vel2bis)))) | |
460 | +#lines(x_seq,int_value2,lwd=2,col="blue") | |
461 | +#lines(x_seq,vel1,lwd=2,col="red") | |
462 | +lines(x_seq,vel1bis,lwd=2,col="red",type="b") | |
463 | +#lines(x_seq,vel2,lwd=2,col="black") | |
464 | +lines(x_seq,vel2bis,lwd=2,col="black",type="b") | |
465 | +legend(0.4, 1, c(expression("Numerics"), expression("Alipchenkov eq 6"), expression("Alipchenkov eq 15")), | |
466 | +lwd= c(2, 2,2),col=c("blue","red","black" )) | |
467 | + | |
468 | +dev.off() | |
469 | +###################################################################### | |
470 | +###################################################################### | |
471 | + | |
472 | +pdf("comparison-flux-wrong.pdf") | |
473 | +plot(x_seq,flux_v,col="blue",xlab=expression("x"),ylab=expression(" average flux"), | |
474 | +ylim=range(c(min(flux_v,flux),max(flux_v,flux)))) | |
475 | +lines(x_seq,flux_v,col="blue", type="b") | |
476 | +lines(x_seq,flux,col="red") | |
477 | +lines(x_seq,flux,col="red",type="b") | |
478 | +dev.off() | |
479 | + | |
480 | + | |
481 | +pdf("comparison-flux-correct.pdf") | |
482 | +plot(x_seq,flux_v_correct,col="blue",xlab=expression("x"),ylab=expression(" average flux"), | |
483 | +ylim=range(c(min(flux_v_correct,flux_correct),max(flux_v_correct,flux_correct))),type="b") | |
484 | +#lines(x_seq,flux_v_correct,col="blue", type="b") | |
485 | +#lines(x_seq,flux_correct,col="red") | |
486 | +lines(x_seq,flux_correct,col="red",type="b") | |
487 | +dev.off() | |
488 | + | |
489 | + | |
490 | + | |
491 | +pdf("comparison-density.pdf") | |
492 | +plot(x_seq,dens_v,col="blue",xlab=expression("x"),ylab=expression(" density"), | |
493 | +ylim=range(c(min(dens_v,dens),max(dens_v,dens))),type="b") | |
494 | +lines(x_seq,ana_dens,lwd=2,col="black") | |
495 | +lines(x_seq,dens,col="red",type="b") | |
496 | +dev.off() | |
497 | + | |
498 | + | |
499 | + | |
500 | +pdf("comparison-sig.pdf") | |
501 | +plot(x_seq,sig_v,col="blue",xlab=expression("x"),ylab=expression(" average sig_vv squared"), | |
502 | +ylim=range(c(min(sig_v,sig),max(sig_v,sig))),type="b") | |
503 | +#lines(x_seq,sig_v,col="blue", type="b") | |
504 | +#lines(x_seq,sig,col="red") | |
505 | +lines(x_seq,sig,col="red",type="b") | |
506 | +dev.off() | |
507 | + | |
508 | +pdf("comparison-vel-squared.pdf") | |
509 | +plot(x_seq,velsq_v,col="blue",xlab=expression("x"),ylab=expression(" average v squared"), | |
510 | +ylim=range(c(min(velsq_v,velsq),max(velsq_v,velsq))),type="b") | |
511 | +#lines(x_seq,velsq_v,col="blue", type="b") | |
512 | +#lines(x_seq,velsq,col="red") | |
513 | +lines(x_seq,velsq,col="red",type="b") | |
514 | +dev.off() | |
515 | + | |
516 | +pdf("comparison-vel.pdf") | |
517 | +plot(x_seq,vel_v,col="blue",xlab=expression("x"),ylab=expression(" average v"), | |
518 | +ylim=range(c(min(vel_v,vel),max(vel_v,vel))),type="b") | |
519 | +#lines(x_seq,vel_v,col="blue", type="b") | |
520 | +#lines(x_seq,vel,col="red") | |
521 | +lines(x_seq,vel,col="red",type="b") | |
522 | +dev.off() | |
523 | + | |
524 | + | |
525 | +pdf("comparison-vel-bis.pdf") | |
526 | +plot(x_seq,vel_v,col="blue",xlab=expression("x"),ylab=expression(" average v"), | |
527 | +ylim=range(c(min(vel_v,vel),max(vel_v,vel))),type="b") | |
528 | +lines(x_seq,0.2*x_seq,col="green") | |
529 | +#lines(x_seq,vel,col="red") | |
530 | +lines(x_seq,vel,col="red",type="b") | |
531 | +dev.off() | |
532 | + | |
533 | +myseq2<-mymat_save[ ,2] | |
534 | +norm1<-def_integral(myseq2,h) | |
535 | + | |
536 | +myseq2<-mymat[ ,2] | |
537 | +norm2<-def_integral(myseq2,h) | |
538 | + | |
539 | +pdf("comparison-vel-profiles.pdf") | |
540 | +plot(mymat_save[ ,1],mymat_save[ ,2]/norm1 | |
541 | +,col="blue","l",xlab=expression("v"),ylab=expression("f(x,v,t) at wall")) | |
542 | +lines(mymat[ ,1],mymat[ ,2]/norm2,col="red") | |
543 | +dev.off() | |
544 | + | |
545 | + | |
546 | + | |
547 | + | |
548 | +print("So far so good") | |
\ No newline at end of file |