• R/O
  • SSH

Tags
Keine Tags

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

File Info

Rev. 1d1ed12bad090edd5f47c0228b16921329292842
Größe 863 Bytes
Zeit 2007-05-29 21:39:58
Autor iselllo
Log Message

I added the file Python-codes/self_similarity.py. This simple code
solves a first order ODE giving the time evolution of the number
concentration for a self-similar distribution for a Brownian kernel in
the continuun limit.

Content

#! /usr/bin/env python
from scipy import *
import pylab  # used to read the .csv file


#from scipy.special import * # to be able to use the error function

def self_similar(y, t):
	return -myconst*y**2.




t = arange(0,4.0, 0.01)


y0 = 1.55e14 # initial total number concentration

a=0.9046
b=1.248

mu=2e-5
k_B=1.38e-23
T=400.
rho_p=1300.

myconst=2.*k_B*T/(3.*mu)*(1.+a*b)
print 'myconst is',myconst


y = integrate.odeint(self_similar, y0, t,printmessg=1)


print 'solution is', y


pylab.plot(t,y[:,0])
pylab.xlabel('Time')
pylab.ylabel('Total Number Concentration')
pylab.title('Self-Similar Evolution Number Concentration')
pylab.grid(True)
pylab.savefig('self_similar_number_concentration_cont_kernel')

pylab.hold(False)


results=zeros((len(t),2))
results[:,0]=t
results[:,1]=y[:,0]

pylab.save("self_similar_pop.txt",results)


print 'So far so good'