
The Scyld Beowulf
Cluster System:

Donald Becker
Scyld Computing Corporation

becker@scyld.com

Presented with MagicPoint

 What does "Cluster" mean to you?

 Cluster:
 A widely used term meaning
 Independent computers
 Combined into a unified system
 Through software and networking

 Cluster Types

 Cluster Types:
 Scalable Performance Cluster
 High Availability (Fail-over) Cluster
 Resource Access Cluster

 Linux Cluster Software

 Linux has software for all clustering types

 Scalable Performance Cluster
 Beowulf
 Linux Virtual Server

 High Availability (Fail-over) Cluster
 Piranha

 Resource Access Systems
 GFS Global File System
 Mosix
 Grid software

 What is Beowulf?

 Beowulf is

 Scalable Performance Clusters based on
 Commodity hardware
 Private system network
 Open source software (Linux) infrastructure

 Why clusters?

 Much better price-performance than traditional supercomputers
 As-needed scalability
 Commodity platforms
 Performance growth rate
 Better continuity and availability
 Long-term viability

 Cluster Advantages

 Price for Performance
 3X to 10X better
 Business market pays for engineering
 Efficient distribution and service channels

 As-need Scalability
 New machines can be automatically added
 New, faster machines can replace older machines
 Architecture and software remains the same
 Investment preserved

 Advantages of Commodity Systems

 Commodity CPUs
 Always available
 Many vendors
 Multiple CPU development teams
 Rapid improvements

 New technology
 Now arrives first on the PC

 Industry Trends

 CC-NUMA and SMP machines remain very expensive

 Clusters are 65% Linux based, 30% other Unix

 IDC reports 30%/year cluster market growth

 What can Beowulf Systems be used for?

 Supercomputer replacement
 Running specially written cluster applications
 Running multiple standard applications

 Managing compute and server farms
 Load balancing network servers
 Constructing highly secure servers
 Controlling multiple highly available servers

 Controlling other machines
 Single-purpose "kiosk" devices
 Audio servers

 What are Beowulf Systems be used for?

 Traditional technical applications
 Simulations
 Biotechnology
 Petro-cluster
 Financial market modeling
 Internet servers
 Audio
 Game servers

 Very Brief Beowulf History

 Beowulf Project
 The Beowulf Project was started at NASA in 1994
 Beowulf was intended to supplement supercomputers
 "Beowulf" was an apt project name
 Linux continues to be the dominant cluster OS

 Scyld Beowulf
 Scyld was started in 1998
 Redesigned for ease of use and deployment
 Scyld Beowulf is the Scyld product
 "Scyld" was the father of Beowulf

 Cluster Software

 What to look for in cluster software system?

 Well, what are the problems?

 Complexity
 Installation
 Applications to use the system
 Maintainence

 Cluster Software Infrastructure

 What to look for in cluster software system

 System management model
 Complexity minimization
 Application and tool availability
 Maturity and continuity

 Previous Solutions

 How have these cluster problems been address in the past?

 Classic Beowulf
 Full OS installation on all nodes
 Supports user login on any node
 Administration by collective operations
 Consistency and synchronization tools
 Cluster monitoring GUI

 New-generation Solution

 How have we improved the world?

 New-generation Beowulf
 Full OS installation only on "master"
 Compute nodes designed as a computational resource
 Single point administration
 Single point updates
 Single process space view
 Centralized monitoring and job control

 Scyld Beowulf

 A standard, supported Beowulf cluster operating system
 Simplifies integration and administration
 Targeting deployment of complex applications

 What it is not:
 automatic parallelization
 a new language, or
 an integrated development environment.

 Scyld Beowulf Features

 "Install once, execute everywhere"
 Administration and use is very similar to a single machine
 Dynamically adding compute nodes is fast and automatic
 Scalable to over a thousand compute nodes
 Software version skew has been eliminated.
 Based on Linux
 Open Source software infrastructure

 Design Philosophy and Goals
 Administrators

 Simplicity
 Minimal new cluster-specific tools

 Users
 Application users should not need to know they are on a cluster
 Administration should require little new knowledge

 Developers
 Need to be sophisticated only in application area
 Compile-run development cycle, not compile-copy-run
 Deployment with a single executable

 System Model

 "Master" front-end
 Multiple "Slave node" compute machines
 Booting and configuration controlled from a master

 Master
 Full operating system installation
 Provides OS, drivers, libraries and applications
 Supports user login

 Slaves
 Have a full kernel
 Only a minimal file system
 No user logins
 No required executables!

 Processes are started with a remote execution system

 Scyld Beowulf Single System Image

 Single Installation
 Single point upgrade
 Kernel, drivers, system libraries
 User applications, user libraries
 No version skew
 Zero-installation scaling
 Full performance on compute nodes
 File system semantics selected
 At system integration, or
 By administrator
 Unified process space

 Operational Details

 Nodes are added dynamically
 A heartbeat is used to detect lost systems
 Detection of lost system connection
 Compute node default is rebooting after 30 seconds
 Configurable behavior

 Advanced Features

 Cluster security model
 User / group node ownership

 Limits on process migration
 "Jailed" processes on slave
 "No Hijack" external server slaves

 Multiple masters
 Scheduler interface
 Checkpoint / restart

 In-depth Subsystems Description

 Unified Process Space

 Beowulf Name Services

 Booting Scyld Clusters

 Unified Process Space

 Problem: Starting and Monitoring jobs on a cluster

 Opportunity: Clusters jobs are issued from designated masters

 Unified Process Space

 All jobs appear to exist on the front-end "master".
 Job control and process monitoring work as expected!
 Control-Z suspends all jobs, "bg" starts all running
 The ’ps’ and ’top’ programs work unchanged

 Running top

 The output from an unmodified ’top’ run

 11:13pm up 4:19, 10 users, load average: 0.00, 0.00, 0.00
 73 processes: 64 sleeping, 9 running, 0 zombie, 0 stopped
 CPU states: 0.2% user, 0.5% system, 0.0% nice, 99.1% idle
 Mem: 128156K av, 122384K used, 5772K free, 30500K shrd, 23608K buff
 Swap: 265064K av, 212K used, 264852K free 74292K cached

 PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
 1948 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1949 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1950 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1951 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1952 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1953 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1954 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch
 1955 becker 0 0 0 0 0 RW 0 99.9 0.0 2:44 cpumunch

 BProc: Beowulf Distributed Process Space

 BProc is the kernel mechanism
 Remote Fork model
 A process is initialized on the master
 "VMA-dump" in the kernel writes the process to a stream
 On the slave node the stream is loaded as a new binary type
 The master retains only a process table entry

 Performance Characteristics

 Start-up
 Under 10 msec. to execute a remote job!
 bpsh uptime takes 0.6 seconds on 64 slow nodes.
 This is about 10X faster than rsh, 20X ssh

 No run time performance impact
 System calls and paging are local
 Process status update to master is compact and low-rate
 Compare to perfect process migration of Mosix

 How BProc works

 BProc is a "Directed Process Migration" Mechanism
 BProc has architectural elements of
 Remote Fork
 Process migration
 Checkpoint / restart
 Design details
 VMA dump and restart -- essentially "checkpoint" to a

socket/stream

 In general, files and sockets are closed
 stdin, stdout, and stderr may remain connected

 Process environment info (process ID) appears unchanged
 Preserves Posix process family semantics
 Signals (SIG*) are forwarded both ways.
 Slave updates state to master.
 Resource usage on exit

 How can this be Fast?

 Cached libraries ("VMA regions")
 Copy on changed pages in known VMA regions
 Copy unknown VMA regions

 Developing improvements
 Dynamic caching of objects
 Caching on swap space disks
 Automatic selection of caching or network file system

 Name Service / Directory Service

 "Name Service" and "Directory Service" mean the same thing.
 A directory service
 Maps a name to a value, or
 Provides a list of names.

 Specific Examples
 User names
 Password and user information

 Host names
 IP addresses and Ethernet MAC addresses

 Network groups
 A list of similar hosts

 Cluster Name Services

 Why are cluster nameservices important?

 Simplicity
 Eliminates per-node configuration files
 Automates scaling and updates
 Performance
 Avoid the serialization of network name lookups.
 Avoid communicating with a busy server
 Avoid failures from server overload
 Avoid the latency of consulting large databases

 Opportunities

 Clusters have a single set of users
 Nodes are similar
 New nodes will have predictable names
 Cluster nodes are granted similar access permissions

 Solution: BeoNSS, Beowulf Name Services

 BeoNSS is a mechanism that
 Caches,
 Computes or
 Avoids name lookup

 Hostnames

 Cluster hostnames have the form .<N>
 Syntax does not conflict
 Compare with DNS and local hostnames
 Special names for "self" and "master"
 Current machine is ".-2" or "self".
 Master is known as ".-1"
 Aliases of "master" and "master0".

 Cluster nodes start at ".0"

 Zero based for flexibility
 Do not assign ".0" for 1-based naming
 Extend to maximum node e.g. ".31"
 Maximum resolvable number defined.

 Mapping Hostnames to IP Addresses

 Required information
 IP address of master
 IP address of first compute node
 Count of compute nodes

 Additional configuration information
 Netmask
 Node station address

 Simple computation of IP address
 First Node IP + Node number
 Little endian addition
 Netmask must support full cluster

 User Name lookups

 Names are reported as password table entry ’pwent’
 BeoNSS reports only the current user
 Cluster jobs do not need to know other users
 Much faster than scanning large lists

 Use BProc name (full passwd entry) if available
 Otherwise compute ’pwent’ from environment variable
 USER
 HOME
 SHELL
 No security issues for correctly written programs
 Programs should check for UID = 0, not username == "root"

 Netgroups

 Netgroups are used primarily for file server permissions
 Netgroups are used in /etc/exports for NFS
 Other file systems have similar security
 Other uses, such as rexec and rsh, are supported
 The supported netgroup is "cluster"
 Alias for "cluster0"
 Group members are all compute nodes
 Hostnames are reported as ".0", ".1" ... ".31"
 Maximum cluster node count is important
 Use ’getnetgrent()’ to access this name service.

 Booting Scyld Beowulf

 Booting has long been a hot topic
 Various boot media
 Disk-based and Disk-less models
 Kernel and driver updates problematic

 We solve the problems with a two phase boot
 Similar to the model used for Linux 2.5

 Beowulf in Two Phases

 Booting Scyld Beowulf Compute Nodes
 Magic Boot
 Two Kernel Monte, and an Intermediate FS
 The final running system

 Phase 1 Boot: Magic Boot

 Concept: Convert to all boot methods to network boot

 Details:
 Minimal Kernel
 Only IP networking support
 No boot options possible

 Simple "RAMdisk"
 Boot program with "insmod" module support
 All known network driver modules

 Mounts /proc
 Loads drivers using /proc/bus/pci
 RARP requests on all interfaces
 Loads boot image from the responding server.
 Syscall to Two Kernel Monte

 Two Kernel Monte

 Concept: Switch Kernel

 Details:
 Scyld-developed mechanism to switch kernels
 Substitutes a new kernel in place of the old
 Similar to a reboot, but without
 going through the BIOS, or
 using persistent media

 Two Kernel Monte Implementation

 Implemented as a kernel module
 No kernel patches (even new exported symbols) required
 The replacement kernel is loaded with the module.
 Much hidden work is involved in setting up legacy BIOS tables

 Beoboot Second Stage

 Phase 2 Boot: Our Operational Kernel
 The new kernel starts up on the compute node
 The second stage RAMdisk is loaded
 The node repeats the network interface detection and RARP
 The "slave daemon" /usr/sbin/bpslave is started
 BPslave contacts the master
 The slave begins accepting commands from the master

 Beoboot Final Stage

 Concept: Configure for specific cluster

 Details:
 Master sets time of day
 Master mounts file systems
 Master starts any application or services

 Compute nodes with Scyld Beowulf

 Base system model is diskless
 Only 10-50MB of file system data
 Minimal file system
 Most space taken by /lib/* libraries
 Most directory entries in /dev/*
 /etc/ is mostly empty
 /etc/passwd and /etc/group are not needed!
 /etc/mtab exists only so that ’df’ works.
 Name services (hostname, password) are usually bypassed.

 No executables are required, not even /bin.

 Recommended but optional local disks
 Used for databases and additional caching
 Optionally mounted and checked on startup
 Various network/cluster file systems are available.

 Developing for Beowulf

 Three levels
 Explicit job creation
 Writing your own MPI or PVM applications
 Using BProc calls

 Simple Cluster Use

 Explicit Job Creation
 Easiest Approach to using a cluster
 Just run jobs on a remote node with bpsh

 Parametric Execution
 Run the same job on multiple data sets
 Easier with a simple queue system
 BBQ: Beowulf Batch Queue

 Compute Farm
 Accept jobs from multiple sources
 Usually used at large sites
 PBS, SGE, LSF and Condor are common systems

 Application Server Cluster

 Compute nodes used as server nodes
 One network connection to master
 Other network connections to Internet

 Application Server Security

 Highly Secure Server Nodes
 No network services to exploit
 No OS password information
 No local executables
 Applications "locked" to not migrate from node

 Example Script

 Script Run on master at start
 Uses standard Linux commands and concepts

 while true; do

 bpsh $NODE appserver
 logger -t appserver Exited with status $?
 done

 Using BProc Calls

 Enhance existing applications with BProc moves

 See ’modprobe’ for a great example
 Reads dependency file from the master
 Reads kernel symbols from the slave
 Reads driver module from the master
 Loads module into slave kernel

 Basic call is bproc_move()
 Remote fork semantics
 Takes a numeric destination node ID.
 Available node ID may be found from the NPR or beomap library

 Development Environment

 We use community-standard programming interfaces
 MPI
 PVM

 BeoMPI allows a binary to dynamically link
 Ethernet MPICH
 Myrinet GMPI
 Dolphin SCI

 An extensible node scheduler, NPR, is integrated
 The development cycle is compile-run, not compile-copy-run.

 Deployment and Support

 Integrated systems available from many vendors

 Training available from Scyld and HP

 Commercial add-ons
 Sistina GFS file system
 Veridan PBSPro scheduler
 Platform LSF load sharing
 SteelEye Lifekeeper fail-over

 Commercial development tools
 Etnus TotalView debugger (May 2002 and later)
 Veridan PBSPro
 MPI/Pro
 Intel Fortran and C++

 Library support for commercial compilers

 Deployment and Support

 Integrated systems from HP and other vendors
 HP has world-wide availability and support

 Training available
 Scyld (on-site)
 HP (world-wide)
 Northrup Grumman for U.S. (GSA and SEWP)

