The Scyld Beowulf
Cluster System:

Donald Becker
Scyld Computing Corporation

becker@scyld.com

Presented with MagicPoint

What does "Cluster” mean to you?

Cluster:

A widely used term meaning
Ulndependent computers
UCombined into a unified system
UThrough software and networking

Cluster Types

Cluster Types:

UScalable Performance Cluster
OHigh Availability (Fail-over) Cluster
UResource Access Cluster

Linux Cluster Software

Linux has software for all clustering types

OScalable Performance Cluster

O Beowulf
OLinux Virtual Server

OHigh Availability (Fail-over) Cluster
OPiranha
LUResource Access Systems

OGFS Global File System
OMosix
O Grid software

What is Beowulf?

Beowulf Is

OScalable Performance Clusters based on
OCommodity hardware

OPrivate system network

UOOpen source software (Linux) infrastructure

Why clusters?

Much better price-performance than traditional supercomputers

As-needed scalability
Commodity platforms
OPerformance growth rate

OBetter continuity and availability
ULong-term viability

Cluster Advantages

Price for Performance
03X to 10X better

OBusiness market pays for engineering
OEfficient distribution and service channels

As-need Scalability
ONew machines can be automatically added
UNew, faster machines can replace older machines
UArchitecture and software remains the same
Ulnvestment preserved

Advantages of Commodity Systems

Commodity CPUs
OAlways available

OMany vendors
OMultiple CPU development teams
URapid improvements

New technology
ONow arrives first on the PC

Industry Trends

CC-NUMA and SMP machines remain very expensive
Clusters are 65% Linux based, 30% other Unix

IDC reports 30%/year cluster market growth

What can Beowulf Systems be used for?

Supercomputer replacement
ORunning specially written cluster applications

ORunning multiple standard applications

Managing compute and server farms

ULoad balancing network servers
HConstructing highly secure servers
UControlling multiple highly available servers

Controlling other machines
USingle-purpose "kiosk" devices
UAudio servers

What are Beowulf Systems be used for?

Traditional technical applications
OSimulations

OBiotechnology
OPetro-cluster
Financial market modeling
Internet servers

OAudio

LIGame servers

Very Brief Beowulf History

Beowulf Project
UThe Beowulf Project was started at NASA in 1994

OBeowulf was intended to supplement supercomputers
U"Beowulf" was an apt project name
OLinux continues to be the dominant cluster OS

Scyld Beowulf

UScyld was started in 1998

URedesigned for ease of use and deployment
UScyld Beowulf is the Scyld product

U"Scyld" was the father of Beowulf

Cluster Software

What to look for in cluster software system?

Well, what are the problems?

OComplexity

Olnstallation

OApplications to use the system
OMaintainence

Cluster Software Infrastructure

What to look for in cluster software system

0System management model
OComplexity minimization
OApplication and tool availability
OMaturity and continuity

Previous Solutions

How have these cluster problems been address in the past?

Classic Beowulf
OFull OS installation on all nodes

OSupports user login on any node
OAdministration by collective operations
HConsistency and synchronization tools
HCluster monitoring GUI

New-generation Solution

How have we improved the world?

New-generation Beowulf
OFull OS installation only on "master"

OCompute nodes designed as a computational resource
0Single point administration

0Single point updates

0Single process space view

UCentralized monitoring and job control

| Scyld Beowulf

A standard, supported Beowulf cluster operating system
Simplifies integration and administration
Targeting deployment of complex applications

What it is not:
Hautomatic parallelization

Oa new language, or
Oan integrated development environment.

Scyld Beowulf Features

O"Install once, execute everywhere"

OAdministration and use is very similar to a single machine
ODynamically adding compute nodes is fast and automatic
OScalable to over a thousand compute nodes

OSoftware version skew has been eliminated.

OBased on Linux

UOpen Source software infrastructure

Design Philosophy and Goals

[
Administrators

OSimplicity
OMinimal new cluster-specific tools

Users
UApplication users should not need to know they are on a cluster
OAdministration should require little new knowledge

Developers

LUNeed to be sophisticated only in application area
UCompile-run development cycle, not compile-copy-run
UDeployment with a single executable

System Model

O"Master" front-end
OMultiple "Slave node" compute machines
UBooting and configuration controlled from a master

LMaster

OFull operating system installation
OProvides OS, drivers, libraries and applications
OSupports user login
HSlaves
OHave a full kernel
OOnly a minimal file system
ONo user logins
ONo required executables!

UProcesses are started with a remote execution system

[Scyld Beowulf Single System Image

Single Installation

Single point upgrade

OKernel, drivers, system libraries
OUser applications, user libraries

No version skew

Zero-installation scaling

OFull performance on compute nodes

UFile system semantics selected

OAt system integration, or
OBy administrator
Unified process space

Operational Detalils

Nodes are added dynamically
A heartbeat is used to detect lost systems

Detection of lost system connection
HOCompute node default is rebooting after 30 seconds

HConfigurable behavior

Advanced Features

OCluster security model
OUser / group node ownership
ULimits on process migration

O"Jailed" processes on slave
O"No Hijack" external server slaves

OMultiple masters
OScheduler interface
OCheckpoint / restart

In-depth Subsystems Description

Unified Process Space
Beowulf Name Services

Booting Scyld Clusters

Unified Process Space

Problem: Starting and Monitoring jobs on a cluster

Opportunity: Clusters jobs are issued from designated masters

Unified Process Space

OAIl jobs appear to exist on the front-end "master".
OJob control and process monitoring work as expected!
HControl-Z suspends all jobs, "bg" starts all running
OThe 'ps’ and 'top’ programs work unchanged

Running top

The output from an unmodified 'top’ run

11:13pm up 4:19, 10 users, load average: 0.00, 0.00, 0.00
73 processes: 64 sleeping, 9 running, 0 zombie, 0 stopped
CPU states: 0.2% user, 0.5% system, 0.0% nice, 99.1% idle
Mem: 128156K av, 122384K used,
Swap: 265064K av,

PID USER PRI NI

1948 becker
1949 becker
1950 becker
1951 becker
1952 becker
1953 becker
1954 becker
1955 becker

[cNeoNoNoNoNoNoNe]

[cNeoNoNoNoNoNoNe]

212K used, 264852K free

o

0 RW
0 RW
0 RW
0 RW
0 RW
0 RW
0 RW

S
0
0
0
0
0
0
0
0 0 RW

[eNeNoNeoNoNeNo)

099.9
099.9
099.9
099.9
099.9
099.9
099.9
099.9

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

5772K free, 30500K shrd, 23608K buff

74292K cached

IZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND

2:44 cpumunch
2:44 cpumunch
2:44 cpumunch
2:44 cpumunch
2:44 cpumunch
2:44 cpumunch
2:44 cpumunch
2:44 cpumunch

BProc: Beowulf Distributed Process Space

BProc iIs the kernel mechanism
ORemote Fork model

UA process is initialized on the master

U"VMA-dump" in the kernel writes the process to a stream
UOnN the slave node the stream Is loaded as a new binary type
UThe master retains only a process table entry

Performance Characteristics

Start-up
OUnder 10 msec. to execute a remote job!

Obpsh uptime takes 0.6 seconds on 64 slow nodes.
OThis is about 10X faster than rsh, 20X ssh

No run time performance impact

HSystem calls and paging are local

UProcess status update to master is compact and low-rate
UCompare to perfect process migration of Mosix

How BProc works

BProc is a "Directed Process Migration" Mechanism

BProc has architectural elements of

ORemote Fork

OProcess migration

OCheckpoint / restart

Design detalils

OVMA dump and restart -- essentially "checkpoint” to a
socket/stream

Uln general, files and sockets are closed
Ostdin, stdout, and stderr may remain connected
OProcess environment info (process ID) appears unchanged

UPreserves Posix process family semantics
OSignals (SIG*) are forwarded both ways.
USlave updates state to master.
CResource usage on exit

How can this be Fast?

OCached libraries ("VMA regions")
OCopy on changed pages in known VMA regions
HOCopy unknown VMA regions

Developing improvements

ODynamic caching of objects

LCaching on swap space disks

OAutomatic selection of caching or network file system

Name Service / Directory Service

"Name Service" and "Directory Service" mean the same thing.
A directory service
OMaps a name to a value, or

CProvides a list of names.

Specific Examples
UUser names
OPassword and user information
UHost names
OIP addresses and Ethernet MAC addresses
ONetwork groups
OA list of similar hosts

Cluster Name Services

Why are cluster nameservices important?

Simplicity
OElminates per-node configuration files
OAutomates scaling and updates
Performance
OAvoid the serialization of network name lookups.
OAvoid communicating with a busy server
OAvoid failures from server overload
UAvoid the latency of consulting large databases

| Opportunities

Clusters have a single set of users
Nodes are similar

New nodes will have predictable names
Cluster nodes are granted similar access permissions

Solution: BeoNSS, Beowulf Name Services

BeoNSS is a mechanism that
OCaches,

UComputes or
HAvoids name lookup

Hosthames

Cluster hostnames have the form .<N>
Syntax does not conflict
OCompare with DNS and local hosthnames

Special names for "self" and "master"
OCurrent machine is ".-2" or "self".

OMaster i1s known as ".-1"
OAliases of "master" and "masterQ".

Cluster nodes start at ".0"
HZero based for flexibility

ODo not assign ".0" for 1-based naming
LOExtend to maximum node e.g. ".31"
OMaximum resolvable number defined.

Mapping Hostnames to IP Addresses

Required information
OIP address of master

UIP address of first compute node
HCount of compute nodes

Additional configuration information
ONetmask
LUNode station address

Simple computation of IP address
UFirst Node IP + Node number
ULittle endian addition
UNetmask must support full cluster

User Name lookups

Names are reported as password table entry 'pwent’
BeoNSS reports only the current user
OCluster jobs do not need to know other users

OMuch faster than scanning large lists

Use BProc name (full passwd entry) if available

Otherwise compute '‘pwent’ from environment variable
OUSER

OHOME

OSHELL

No security issues for correctly written programs

UPrograms should check for UID = 0, not username == "root"

Netgroups

Netgroups are used primarily for file server permissions
ONetgroups are used in /etc/exports for NFS

OOther file systems have similar security

OOther uses, such as rexec and rsh, are supported
The supported netgroup is "cluster”

OAlias for "clusterQ"

Group members are all compute nodes
UHostnames are reported as ".0", ".1" ... ".31"
UMaximum cluster node count is important

Use 'getnetgrent()’ to access this name service.

| Booting Scyld Beowulf

Booting has long been a hot topic
OVarious boot media

ODisk-based and Disk-less models
OKernel and driver updates problematic

We solve the problems with a two phase boot
OSimilar to the model used for Linux 2.5

Beowulf In Two Phases

Booting Scyld Beowulf Compute Nodes
OMagic Boot

OTwo Kernel Monte, and an Intermediate FS
UThe final running system

Phase 1 Boot: Magic Boot

Concept: Convert to all boot methods to network boot

Detalls:
OMinimal Kernel

OOnly IP networking support
ONo boot options possible

OSimple "RAMdisk"
OBoot program with "insmod" module support
OAll known network driver modules

UMounts /proc

ULoads drivers using /proc/bus/pci

URARP requests on all interfaces

UlLoads boot image from the responding server.
OSyscall to Two Kernel Monte

Two Kernel Monte

Concept: Switch Kernel

Details:
UScyld-developed mechanism to switch kernels

OSubstitutes a new kernel in place of the old

OSimilar to a reboot, but without

Ogoing through the BIOS, or
Ousing persistent media

Two Kernel Monte Implementation

Implemented as a kernel module

No kernel patches (even new exported symbols) required

The replacement kernel is loaded with the module.

Much hidden work is involved in setting up legacy BIOS tables

| Beoboot Second Stage

Phase 2 Boot: Our Operational Kernel
OThe new kernel starts up on the compute node

OThe second stage RAMdisk is loaded

UThe node repeats the network interface detection and RARP
UThe "slave daemon" /usr/sbin/bpslave is started

OBPslave contacts the master

UThe slave begins accepting commands from the master

Beoboot Final Stage

Concept: Configure for specific cluster

Details:
OMaster sets time of day

OMaster mounts file systems
OMaster starts any application or services

Compute nodes with Scyld Beowulf

Base system model is diskless
Only 10-50MB of file system data

Minimal file system
OMost space taken by /lib/* libraries

OMost directory entries in /dev/*

O/etc/ is mostly empty
O/etc/passwd and /etc/group are not needed!

O/etc/mtab exists only so that 'df’ works.
OName services (hostname, password) are usually bypassed.

ONo executables are required, not even /bin.

Recommended but optional local disks
HUsed for databases and additional caching

UOptionally mounted and checked on startup
Various network/cluster file systems are available.

Developing for Beowulf

Three levels

OEXplicit job creation

OWriting your own MPI1 or PVM applications
HUsing BProc calls

Simple Cluster Use

Explicit Job Creation
OEasiest Approach to using a cluster

OJust run jobs on a remote node with bpsh

Parametric Execution

ORun the same job on multiple data sets
OEasier with a simple queue system
UBBQ: Beowulf Batch Queue

Compute Farm
UAccept jobs from multiple sources
UUsually used at large sites
UPBS, SGE, LSF and Condor are common systems

Application Server Cluster

Compute nodes used as server nodes
One network connection to master
Other network connections to Internet

Application Server Security

Highly Secure Server Nodes
ONo network services to exploit

ONo OS password information
ONo local executables
Applications "locked" to not migrate from node

Example Script

Script Run on master at start
Uses standard Linux commands and concepts

while true; do

CObpsh $NODE appserver
Ulogger -t appserver Exited with status $7?
done

Using BProc Calls

Enhance existing applications with BProc moves

See 'modprobe’ for a great example
UReads dependency file from the master

OReads kernel symbols from the slave
OReads driver module from the master
OLoads module into slave kernel

Basic call is bproc_move()

LURemote fork semantics

UTakes a numeric destination node ID.

UAvalilable node ID may be found from the NPR or beomap library

Development Environment

OWe use community-standard programming interfaces

OMPI
OPVM

UBeoMPI allows a binary to dynamically link

OEthernet MPICH
OMyrinet GMPI
O Dolphin SCI

OAN extensible node scheduler, NPR, is integrated
UThe development cycle is compile-run, not compile-copy-run.

'Deployment and Support

Integrated systems available from many vendors
Training available from Scyld and HP

Commercial add-ons
OSistina GFS file system

OVeridan PBSPro scheduler
OPlatform LSF load sharing
USteelkEye Lifekeeper fail-over

Commercial development tools

UEtnus TotalView debugger (May 2002 and later)
UVeridan PBSPro

UOMPI/Pro

Ulntel Fortran and C++

'Deployment and Support

Integrated systems from HP and other vendors
OHP has world-wide availability and support

Training available

OScyld (on-site)

OHP (world-wide)

ONorthrup Grumman for U.S. (GSA and SEWP)

